OCR Computer Science A-Level
Course Overview
· Exam Board – OCR
· Usual Age Range – 16-18
· Qualification – Equivalent to 1 A-Level
· Curriculum Time – Five 1 hour lessons per week in class plus additional work in Independent Learning Time 
· Assessment
	Component
	Marks
	Weight
	Description

	Computer Systems (01)
	140
	40%
	The internal workings of the (CPU), data exchange, software development, data types and legal and ethical issues.

	Algorithms & Programming (02)*
	140
	40%
	Using computational thinking to solve problems.

	Programming Project (03)*
	70
	20%
	Students will be expected to analyse a problem (10 marks), and design (15 marks), develop and test (25 marks), and evaluate and document (20 marks) a program. The program must be to solve it written in a suitable programming language.



· Grading – A*, A, B, C, D, E, F, U
· Full specification - https://www.ocr.org.uk/Images/170844-specification-accredited-a-level-gce-computer-science-h446.pdf
Curriculum Intent
The Computer Science curriculum at our UTC equips students with the essential knowledge and practical skills to thrive in the digital age. We believe in fostering a deep understanding of computer systems, problem-solving, and computational thinking while nurturing creativity and innovation.
Beyond technical expertise, we cultivate a range of desirable, transferable skills like research, planning, collaboration, and effective communication of ideas. This holistic approach prepares students for diverse career paths and challenges them to think critically and solve problems creatively.
Through regular extended writing activities, we nurture a love of reading and hone literacy skills, while integrated numeracy lessons emphasize the importance of file size and compression in real-world applications.
Following this foundational program, students can seamlessly transition into further education, apprenticeships, direct employment etc. paving the way for exciting careers in the tech sector. From Graphic Design and Game Design to Animation, Software Engineering, Network Manager to Marketing and AI development, the possibilities are endless.

	What can parents do to support?
Students are assessed on the basis of individual units. Students (by the end of the January sequence of lessons) are already aware of their weaknesses in certain modules of the course. To support, parents can encourage them to complete outstanding extension work (especially work in a weaker module) and take a keen interest in their child’s NEA (Programming Project)
Students are also advised to practice programming, and like any other language it requires continued challenge and practice. Parents can support by encouraging students to approach: Python, Java or HTML, CSS, JS in their free time outside of class. It is recommended that students practice programming up to 3+ hours a week.


[bookmark: _GoBack]

Study Tips
The below links will be helpful to those studying Computer Science:
· Revision Resource – https://www.physicsandmathstutor.com/computer-science-revision/a-level-ocr/
· Revision Resource - https://www.savemyexams.com/a-level/computer-science/ocr/17/revision-notes/
· IDE - https://replit.com/~
· Programming Resources - https://www.w3schools.com/python/
Curriculum Overview 
Numbers within brackets indicate lesson time allocation ie: 1.1.1 – Structure & Function of Processor (2) means two lessons will be allocated to the topic. Following each unit, a summative assessment will take place for gap-analysis and exam practice. Time allocated in lesson for revision
Year 12:

Year 13:

Justification of Sequence
· Unit 1’s theoretical load will help to inform Unit 2’s practical elements.
· Practicing Programming early will help to inform Unit 2’s programming element and will support students that may have not approached programming in GCSE/ other subjects
· Unit 1’s theoretical load requires students to revisit previous content to make synoptic links and a lasting long term memory
· The Programming Project’s independent element requires student gain as much support in programming and ample time for feedback, questioning and answering
· Revision/ past papers will help to solidify all content and techniques acquired previously 

September


October


November


December


January


Introduction to Course (1)


Unit 1.1 Characteristics of Contemporary Processors (AS)


Unit 1.2 Software & Development (AS)


1.2.1 - Systems Software (4)


1.2.2 - Application Generation (2)


1.2.3 - Introduction to Programming (5)


Unit 1.3 Exchanging Data (AS)


1.1.1 - Structure & Function of Processor (2)


1.1.2 - Types of Processor (2)


1.1.3 - Input, Output & Storage (3)


1.3.1 - Compression, Encryption (1) 


1.3.2 - Databases (3)


Unit 1.2 Software & Development (AS)


Unit 1.3 Exchanging Data


1.3.3 - Networks (3)


1.3.4 - Web Technologies (5)


1.2.4 - Types of Programming Languages (1)


Introduction to Python Programming (4)


NEA Project


Project Planning (2)


Analysis (6)


February


Unit 1.4 Data Types & Algorithms (AS)


1.4.1 - Data Types (6)


1.4.2 - Data Structures (3)


1.4.3 - Boolean Algebra (1)


Python Programming (2)


March


Unit 1.5 Legal, Moral, Cultural & Ethics (AS)


1.5.1 - Computing Related Legislation (2)


1.5.2 - Moral & Ethical Issues (1)


Unit 1.1 (A-Level)


1.1.3 - Input, Output & Storage (3)


April


Unit 1.2 (A-Level)


Revisiting Content (3)


1.2.4 - Software Development (2)


NEA Project


Design (5)


Feedback on Analysis 


May


Unit 1.3 (A-Level)


1.3.2 - Databases & SQL (4)


1.3.4 - Web Technologies (PageRank & Sever Side Processing) (3)


Unit 1.4 (A-Level)


1.4.3 - Boolean Algebra (D Type Flip Flops & Boolean Rules) (2)


June


Unit 1.5 (A-Level)


Moral Discussions (1)


Revision (12)


July





NEA Project


Development (12)


End of Year



September


October


November


December


January


Unit 2.1 Elements of Computational Thinking


Unit 2.2 Problem Solving & Programming


2.2.1 - Programming Technique (2)


2.1.1 - Thinking Abstractly (1)


Unit 2.3 - Algorithms


Unit 2.3 - Algorithms


2.3.4 - Searching Algorithms (2)


2.3.1 - Analysis, Design & Comparison of Algorithms (3)


Past Papers


NEA Project


Feedback


February


Revision


Unit 1 (15)


NEA Project


March


Revision


Unit 1


Past Papers


Unit 1


April


NEA Project


Final Hand-in


May


June


Unit 1 Assessment


July


Completion of Course


2.1.2 - Thinking Ahead (1)


2.1.3 - Thinking Procedurally (1)


2.1.4 - Thinking Logically (1)


2.1.5 - Thinking Concurrently (1)


2.2.2 - Computational Methods (2)


NEA Project


Feedback


Development (6)


2.3.2 - Algorithms for the Main Data Structures (4)


2.3.3 - Sorting Algorithms (4)


2.3.5 - Path Finding Algorithms (3)


Past Papers


Unit 1 (4)


Evaluation (10)


Unit 1 (4)


Hand-in


Feedback 


Unit 2


Unit 2


Past Papers


Unit 1


Unit 2


Revision


Unit 1


Past Papers


Unit 1


Unit 2


Unit 2


Unit 2 Assessment


Programming


Programming


